Voltage Control of PM Synchronous Motor Driven PM Synchronous Generator System Using Recurrent Wavelet Neural Network Controller
نویسندگان
چکیده
In this paper the two novel recurrent wavelet neural network (RWNN) controllers are proposed for controlling output direct current (DC) voltage of the rectifier and output alternate current (AC) voltage of the inverter. The output power of the rectifier and the inverter is provided by three-phase permanent magnet synchronous generator (PMSG) system directly-driven by permanent magnet synchronous motor (PMSM). Firstly, the field-oriented mechanism is implemented for controlling output of the PMSG system. Then, one RWNN controller is developed for controlling rectifier to convert AC voltage into DC link voltage and the other RWNN controller is implemented for controlling inverter to convert DC link voltage into AC line voltage. Moreover, two online trained RWNNs using backpropagation learning algorithms are developed for regulating both the DC link voltage of the rectifier and the AC line voltage of the inverter. Finally, the effectiveness and advantages of the proposed two RWNN controllers are demonstrated in comparison with the two PI controllers from some experimental results.
منابع مشابه
Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate
Abstract: A permanent magnet (PM) synchronous generator system driven by wind turbine (WT), connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN) and amended particle swarm optimization (PSO) to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملRobust Controller Design for IG Driven by Variable-Speed in WECS Using μ-Synthesis
This paper presents robust controller design for a wind-driven induction generator system using structured singular value ( -synthesis) method. The controller was designed for a static synchronous compensator (STATCOM) and a variable blade pitch angle in a wind energy conversion system (WECS) in order to achieve the required voltage and mechanical power control. The results indicated that this ...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کامل